Virus Propagation on Time-Varying Networks: Theory and Immunization Algorithms

نویسندگان

  • B. Aditya Prakash
  • Hanghang Tong
  • Nicholas Valler
  • Michalis Faloutsos
  • Christos Faloutsos
چکیده

Given a contact network that changes over time (say, day vs night connectivity), and the SIS (susceptible/infected/susceptible, flu like) virus propagation model, what can we say about its epidemic threshold? That is, can we determine when a small infection will “take-off” and create an epidemic? Consequently then, which nodes should we immunize to prevent an epidemic? This is a very real problem, since, e.g. people have different connections during the day at work, and during the night at home. Static graphs have been studied for a long time, with numerous analytical results. Time-evolving networks are so hard to analyze, that most existing works are simulation studies [5]. Specifically, our contributions in this paper are: (a) we formulate the problem by approximating it by a Non-linear Dynamical system (NLDS), (b) we derive the first closed formula for the epidemic threshold of timevarying graphs under the SIS model, and finally (c) we show the usefulness of our threshold by presenting efficient heuristics and evaluate the effectiveness of our methods on synthetic and real data like the MIT reality mining graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding and Managing Propagation on Large Networks—Theory, Algorithms, and Models

How do contagions spread in population networks? What happens if the networks change with time? Which hospitals should we give vaccines to, for maximum effect? How to detect sources of rumors on Twitter/Facebook? These questions and many others such as which group should we market to, for maximizing product penetration, how quickly news travels in online media and how the relative frequencies o...

متن کامل

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Models and Algorithms for Network Immunization

Recently, there has been significant research activity in the algorithmic analysis of complex networks, such as social networks, or information networks. A problem of great practical importance is that of network immunization against virus spread. Given a network, a virus-propagation model, and an immunization cost function, we are interested in containing the spread of the virus while minimizi...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010